SH-III/Chemistry-301C-5(T)/19

B. Sc. Semester III (Honours) Examination, 2018-19 CHEMISTRY

Course ID : 31411

Course Code : SHCHE/301C-5(T)

Course Title: Physical Chemistry-II

Time: 1 Hour 15 Minutes

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer *any five* questions:
 - (a) Arrange the ions according to their molar ionic conductance values: Li^+ , Na^+ , K^+ , Rb^+
 - (b) Draw the $\psi(x)$ vs. x plot for the first excited state of an 1-dimensional harmonic oscillator.
 - (c) Chemical potential is an intensive property of the system. Comment.
 - (d) Mention two fundamental difference between molar property and partial molar property.
 - (e) ' \hat{p}_x is not an eigen operator for the particle-in-a 1-dimensional box wave function.' What inference you can draw from the above fact?
 - (f) $y_i P = x_i p_i^o$ Is it Raoult's law or not? x_i is the liquid phase molefraction and y_i is the vapour phase molefraction of the species *i*, *p* is the total pressure of the vapour phase.
 - (g) State whether $\frac{d}{dx}$ and $\frac{d}{dy}$ will commute or not.
 - (h) Debye-Hückel law is called a limiting law. Why?
- 2. Answer *any two* questions:
 - (a) (i) Show that if the eigenfunctions of an Hermitian operator have different eigenvalues, then they are orthogonal.
 - (ii) Find the relation between mean ionic activity and ionic activities of $Na_2 SO_4$ solution.
 - (iii) Expand the operator $\left(\frac{d}{dx} + x\right) \left(\frac{d}{dx} x\right)$ 2+1+2=5
 - (b) (i) Calculate the H^+ *ion* concentration of a solution of HCOOH containing 0.092g of acid per litre. (K_a for HCOOH at 25°C is 2.14 × 10⁻⁴) 2
 - (ii) Define fugacity. Comment on its unit.
 - (iii) How would you define ideally-dilute solutions? $2+1\frac{1}{2}+1\frac{1}{2}=5$

Please Turn Over

Full Marks: 25

$1 \times 5 = 5$

5×2=10

10337

SH-III/Chemistry-301C-5(T)/19 (2)

- (c) (i) Derive an expression for de-Broglie wavelength of photoelectrons emitted when radiation of frequency v, falls on an emitter with threshold frequency v_0 .
 - (ii) Explain the relevant graphical plot for the conductometric titration between HCl and NH_4OH . 3+2=5
- (d) (i) For the distribution of a species between two immiscible solvents, thermodynamically derive the Nernst's distribution law.
 - (ii) The equivalent conductance of a very dilute solution of $NaNO_3$ at 18°C is 105.2 mho cm^2 . If the ionic conductance of NO_3^- ions in the solution is 61.7 mho cm^2 , calculate the transport number of Na^+ ions in the solution. $2\frac{1}{2}+2\frac{1}{2}=5$
- 3. Answer *any one* question:

- $10 \times 1 = 10$
- (a) (i) If V(x) = V(-x), symmetric about the origin, then show that both $\psi(x)$ and $\psi(-x)$ are solutions of the \hat{H} (Hamiltonian Operator) with the same eigenvalue E.
 - (ii) Normalize $\psi(x) = ic$ (where C is a constant) in the range $-L \le x \le L$. $(i = \sqrt{-1})$.
 - (iii) K_p for a gaseous reaction increases by 2% per degree rise in temperature near 600K. Calculate ΔH of the reaction.
 - (iv) Calculate the molal ionic strength of a solution which is 0.01 m with respect to Na_2SO_4 and 0.02 m with respect to $AlCl_3$.
 - (v) Find the degeneracy of a particle in a cubical box of dimension 'l' with energy $\frac{14h^2}{8 ml^2}$.

 $2 \times 5 = 10$

- (b) (i) In the distribution of succinic acid between ether and water at 15°C, 20 mL ethereal layer contains 0.092g of the acid. Find out the weight of the acid present in 50 mL of the aqueous solution in equilibrium with it if the K_D value for succinic acid between water and ether is 5.2.
 - (ii) If the percentage error in measurement of the radius of the capillary is 'x', then show that percentage error in the measurement of the viscosity co-efficient will be equal to 4x.
 - (iii) If $\hat{A}\psi = a\psi$, then show that σ_a (standard deviation for the measurement of the observable *a*) is zero.
 - (iv) Prove that for ideal mixing $\Delta V^{mix} = 0$
 - (v) "Photo-eletric work function is generally less than ionization energy of the electron."
 What inference one can draw for it? 3+2+2+1=10